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Abstract

This paper describes the implementation of a fast, flexible
location-independent routing system for the Global Data
Plane. The system contains many features of a complete GDP
switching network including location-independent routing,
certificate chaining, and a routing information base. Other
features were also implemented for security and performance
including packet-level encryption that can be used to build
full dTLS support at each hop, and almost lock-free caching
of the forwarding table. Benchmarks indicate that the system
has superior performance both in general and compared to
previous implementations, and we propose that our imple-
mentation can be naturally extended to support other novel
features such as arbitrary trust domains for routing.

1 Introduction

The Global Data Plane (GDP) [1] is a system for secure dis-
tributed computing. An essential aspect of the GDP is its
ability to utilize fog and edge devices to distribute compu-
tation. While this allows the GDP to use a wider variety of
compute and data sources than traditional cloud or distributed
compute systems, it also means that encrypting data, veri-
fying computation and hiding information are essential to
prevent attacks on the data plane. Existing components for
this include DataCapsules, which are cryptographically veri-
fied bundles of data, and secure code execution on untrusted
nodes within secure enclaves such as Intel SGX.

Location-independent routing ties all these components of the
GDP together. Each node in the network is addressed by its
GDPName, a hash of its metadata, rather than its IP address.
This allows nodes to be relocated physically while retaining
the same address. For instance, a DataCapsule addressed by
a particular GDPName could move to a different storage
provider without requiring any action on the part of its clients.
Because a single computation might use data from multiple
edge devices and run compute across multiple devices, it is
essential for all of these devices to be able to communicate
through a routing network. This motivates the need for an
overlay network on top of IP that allows nodes in the GDP to
communicate using their GDPNames.

An important property of this system is to ensure that packets

are correctly routed to their destinations, even in the presence
of adversarial nodes in the system. For instance, it should
not be possible for a malicious node to claim a particular
GDPName and intercept or drop all traffic intended for that
target. To enforce this, the basic idea is to use GDPNames as
a root of trust, by including the public key of each node as
part of the metadata whose hash yields the GDPName. Then,
for a server to advertise its ownership of a GDPName, it must
present a certificate signed by this public key proving that it is
authorized to do so, in a process known as secure delegation.
By chaining such certificates, and verifying them at each
router in the network, honest participants can communicate
even in the presence of malicious participants.

A secondary property is the reduction of metadata leakage.
For instance, it should be difficult for an adversary monitor-
ing the incoming and outgoing traffic of an honest router,
but with no access to the Routing Information Base (a dis-
tributed system that communicates with GDP routers to deter-
mine the path of packets in the system), to determine which
GDPNames it is communicating with, or how they map to IP
addresses.

The routing system must be highly performant and minimize
overhead due to the amount of data being transferred and
the complexity of modern network paths. Internet of Things
(IoT) and edge or fog computing demands mean the system
should maintain its efficiency at a potential scale of up to 10'2
nodes.

Our goal was to build a prototype of software-based switches
and a Routing Information Base (RIB) with faster perfor-
mance than existing implementations that can naturally be ex-
tended to support advanced features needed for GDP routing.
This switch should be able to run on commodity hardware in
order to facilitate the growth of the GDP network. To that end,
we used the Rust programming language [2] and the Capsule
framework [3]. Rust is a highly performant compiled lan-
guage that also includes strong type annotations and compiler
guarantees, helping make our code more robust and secure
than a C implementation would be while still achieving faster
performance than interpreted languages like Python. Capsule
is an open-source networking framework built on the Data
Plane Development Kit (DPDK) [4], which is a kernel-bypass
networking solution that can be used to implement highly
performant packet processing routines.



2 Related Work

2.1 Existing GDP implementations
2.1.1 The Python-based GDP research prototype

An existing GDP research prototype implementation exists
in Python, which implements a large number of features in-
cluding GDPNames derived from the hash of metadata, the
AdCert and RtCert certificate delegations, an RIB implemen-
tation which they call the GLookupService, and so forth [1, 5].
The author of this research prototype have done extensive per-
formance evaluations and comparisons, and a large part of
our implementation relies on the models they have proposed.
However, the switch provided in this implementation has very
poor throughput especially at low packet sizes, making it un-
suitable for production level use. Our goal is to provide a
performant design and implementation of a subset of this
prototype’s features, and add additional features of our own
contribution.

2.1.2 Click-based production prototype

The Click-based [6] production prototype is written in C/C++,
and supports a subset of the features in the Python implemen-
tation [7]. Critically, though, this system focuses on location-
independent routing, and does not support certificate vali-
dation, meaning that it does not verify resource ownership
before routing packets, a key security requirement of our sys-
tem. The original authors benchmarked the system primarily
on latency, although throughput results are also available in
a separate paper [8]. This system is production quality and,
at the time of writing, is the currently deployed version. We
have used this implementation as a benchmark for some of
our performance comparisons, and we generally exceed their
results by a significant margin.

2.2 Other routing networks
2.2.1 Dam and Palmskog

An existing system for location independent routing is pre-
sented in [9]. Unlike our approach, this system does not
use a Routing Information Base (RIB) and uses decentral-
ized communication between individual switches. In addition,
while their system can be built on IP, it is designed to also
be possible to implement at a lower level, bypassing IP alto-
gether.

While this approach provides some advantages, such as hav-
ing fewer possible sources of failure, having to gradually
propagate network topology changes to different nodes in-
troduces a possible inefficiency compared to our approach,
where the RIB serves as the most up-to-date source of truth.
In addition, this paper focuses on describing the theory of the
system without an implementation, meaning that it is unclear

how practical the routing system described would actually
be to implement. In contrast, our approach is simple and can
achieve high performance, as we demonstrate with our Rust
implementation.

2.2.2 The Tor network

The Tor routing system [10] is a encrypted network system
that hides node IPs (in the case of “hidden services”) and
uses onion routing. In onion routing, clients choose the path
to communicate across, relying on the obfuscation of their
traffic amongst that of other network participants to reduce
metadata leakage. In general, participants in Tor accept that
they may be communicating across malicious routers, and
rely on there being at least one “honest” participant in their
chain (or multiple non-cooperating malicious participants) to
ensure anonymity.

In contrast, our approach is designed to work with trusted
routers. However, we also ensure that packets only pass
through routers specifically delegated from the source or des-
tination addresses, so any malicious routers cannot see traffic
that they are not authorized to view, reducing information
leakage.

2.2.3 Lira

The location independent system Lira [11] focuses on op-
timizing content delivery, so it is fairly different from our
system: names change rather than being hashes of metadata,
and the content has at least one provider whose IP is known.
Lira does not seek to hide information to the same degree,
which removes some performance constraints on our system,
but is also more limited in where it can be deployed (content
delivery).

The GDP is more flexible and supports more use cases be-
cause of its encryption and security, but this comes at perfor-
mance costs. We evaluate these costs in our Results section
when we compare throughput and forwarding rate with and
without encryption.

2.24 TARP

The TARP system [12] does not deal with securing communi-
cations the way our system or Tor do, but it does attempt to
create a scalable system of routers. Like [9], it does not use a
central Routing Information Base; instead, it uses a distributed
system where individual routers store paths of a certain length
or connect to other routers to get larger paths.

Our system can theoretically support this kind of scale in
a more centralized fashion with hierarchical trust domains,
each of which is managed by an RIB. The advantages of
a centralized approach come in simplicity and information
hiding from individual routers, while the downsides include



more vulnerability in the case of the RIB failing or being
compromised by an attacker.

3 Design

Our system is heavily based on the design presented in Chap-
ters 5 and 6 of [1] - we first provide a brief summary of
that design, and then elaborate on the extensions we made to
it.

3.1 Base Design

We illustrate the existing design through the trace of a hy-
pothetical packet through the network. [1] provides a for-
mal description of the protocol, along with a rough security
proof.

Consider a source server A connected to a GDP switch R4, and
a destination B connected to a switch Rg. These four machines
all have private/public key pairs, and are each addressed by
their GDPName, a hash of their public keys (and potentially
other metadata).

For A to communicate to B, it sends a packet to its switch R4
indicating that B is its final destination. Along with the data
payload, this packet contains a routing certificate (RtCert)
authorizing Ry to send packets on behalf of A, signed by the
private key of A. This is known as advertising the GDPName
AtoRy.

R, validates this certificate, then contacts the RIB to search
for the switch associated with the server B. The RIB replies
with Rp, along with aRtCert (B — Rp) . The RIB also returns
a RtCert (Rg — 1IP), where IP is the current IP address of
the switch Rp.

R4 validates these certificates using the known public keys
of B and Rp, then generates a new certificate RtCert (R4 —
Rp) authorizing Rp to forward packets on behalf of R4 for
the purpose of relaying packets from A to B. We call this
the delegated advertisement of address A by Ry to Rp. This
certificate is appended to the packet, which is then forwarded
to Rp.

Rp verifies the certificate chain RtCert (A — R4) and
RtCert (R4 — Rp) bundled with the packet. Since it is con-
nected to B directly, it can directly forward the packet to the
known IP address of B.

3.2 Obtaining Metadata

Each node needs to verify the certificates associated with the
packet being transmitted. For instance, R4 needs to verify
certificates signed by A, B, and Rp. To do so, they need to
know the public keys corresponding to these nodes.

One solution, used in the Python GDP implementation in
[1], would be to include the public keys and other metadata
as part of the certificate. This is not self-referential, because
the GDPName of each node is a hash of its metadata, in-
cluding its public key. So while knowing a GDPName is not
sufficient for us to know its public key, we can verify that a
public key corresponds to a given GDPName by comparing
hashes.

Instead, our implementation stores the metadata for each node
in the RIB, then caches it on each router. When a router
needs to validate a certificate owned by some GDPName X,
it checks its local cache for the metadata associated with X.
If this metadata is present, it continues as normal. Otherwise,
it sends a request to the RIB for the metadata associated with
X. This gives us a reduced packet size (since the certificates
are smaller) at the expense of increased latency on initial
connections, since we need to wait for the RIB to populate
the router cache.

3.3 Packet Rejection

It is often the case that a router does not have the information
it needs to verify or forward a packet, as it may be waiting on
a response from the RIB. To handle this, one solution (used
by the Python GDP router) would place the packet on a queue
and forward it once the RIB response arrives. However, this
approach has issues under high load, since these queues can
grow rapidly, possibly exceeding the memory limit of the
router. It also adds significant complexity to the router, since
upon receiving a RIB response, it would have to check all
waiting queues (across all cores) and determine which packets
it is now capable of forwarding.

Instead, our implementation offloads this responsibility to the
client. If the router receives a packet that it cannot immedi-
ately forward, the packet is dropped and a NACK is sent back
to the origin requesting a retry after a short period of time.
Simultaneously, a request is sent to the RIB for the missing
data, so that when the origin retransmits the packet, the router
has the data it needs to forward it.

One consequence of requiring clients to handle the retransmis-
sion logic is that they must receive the NACK packets to know
to stop transmitting. These packets may need to be forwarded
through intermediate GDP routers to get to the client. For
instance, if we are sending a packet along A — R4 — Rg — B,
and B rejects an incoming packet, the NACK needs to be for-
warded by Rp back to R4, and finally back to A. To do this,
each switch maintains a nack_cache storing all recently ac-
tive connections and the IP address of their “previous hop”.
For instance, here Rg would record that packets with source
GDPName A were received from node Ry (as a tuple (A,Ry)),
so NACK packets with a source A should be sent to R4. A tuple
(X,Ry) is only inserted into the nack_cache of a router R af-



ter Ry has successfully advertised X to R, so it is not possible
to use NACK packets to bypass the guarantees offered by the
certificate system.

NACKs are also used to indicate an overlarge message payload
size. Even if the PDU is small enough at the first hop, it may
become too large after certificates are appended in subsequent
hops, so the client must be instructed to reduce the payload
size. This design is spiritually similar to the Path MTU Dis-
covery technique used at the IP layer, but takes place at the
level of the GDP overlay network, with NACK packets used as
the analogue of ICMP packets.

3.4 Hop-to-hop Encryption

One risk with the system as presently described is metadata
leakage across hops. An external observer of the network
could trace the path of a packet through the network, and so
recover the source IP address of some GDPName A even if
all its packets went through a router R4. To address this, each
pair of directly communicating routers first participate in a
handshake to establish a shared temporary key, then decrypt
and re-encrypt using the appropriate keys the GDP headers
and data payload before forwarding the packet, following
the dTLS protocol. This also allows us to avoid the GDP
handshake described in [1], since dTLS protects us against
replay attacks. We discuss the performance implications of
this in the next section.

3.5 Certificate Caching

A key optimization made is to cache valid certificate chains,
so that we do not have to validate them and generate new
routing certificates for every packet that passes through the
switch. Consider a stream of packets passing through A —
Rs — Rp — Rc — C. At Rp, when the first packet arrives,
we verify that the included certificate chain authorizes R4 to
advertise on behalf of A (at least for packets destined for C,
and for a limited timespan). We then cache the tuple (A, Rp),
along with the generated RtCert authorizing Rc to advertise
on behalf of Rp for this purpose. When subsequent packets
pass through R along the same path, we can then skip cer-
tificate validation, and just append the new certificate to the
packet before re-encryption and transmission. This is because
dTLS ensures that packets claiming to have previously passed
through Rp actually have, and the existing certificate chain
(and the new certificate) is therefore still valid. As a conse-
quence, we remove many expensive cryptographic operations
from the “hot path” of the router - unlike the decryption and
encryption in dTLS, which uses AES and so is fast on mod-
ern hardware, our certificates use public-key cryptography,
which is much slower and so should be avoided when possi-
ble.

Octets 0-11

encryption
nonce
12-13 14 15 16-17 18-49 50-81
GDP magic ) data source destination
_5 value tl |action length | GDPname | GDPname
3
o
=
% 82-113 variable variable
-
=
L last hop payload certificates

Figure 1: GDP PDU

3.6 Node Discovery

When a client node A connects to the system, it first broad-
casts a packet within its local network to search for avail-
able GDP routers. After some router R responds, they per-
form a dTLS handshake to establish a secure connection and
share their GDPNames. Then, the node generates a certificate
RtCert(A — R) delegating its name to its router for a specific
duration (say, 10 minutes). The router stores this certificate
and publishes it to the RIB, so that other routers wishing to
communicate with A know to go through R. If A is unable
to find any routers on its local network, it is also capable of
contacting a “root” GDP router at a hardcoded IP address and
delegating its name to that router.

4 Implementation

4.1 GDPinUDP Protocol Data Unit

The fields in our GDP PDU, which is transported within a
UDP datagram, are as follows:

* Encryption nonce: A 96-bit randomly generated nonce
for the AES-GCM encryption process.

* GDP magic value: A 16-bit magic value used to distin-
guish GDP packets from regular UDP packets in order
to avoid the overhead of decryption failure.

e TTL: GDP level time-to-live that limits how many router
hops a packet can traverse.

* Action: Denotes a specific GDP action such as RIB
querying, payload delivery, Nack, etc.

» Data length: A field describing the length of the payload,
used to enable appending certificates along hops without
parsing the entire payload.

¢ Source GDPName: GDPName of the source



¢ Destination GDPName: GDPName of the intended des-
tination

* Last hop GDPName: GDPName of the previous hop,
used to look up the proper verification data at each router.

» Payload: The payload being transmitted.

* Certificates: A binary-serialized list of certificates that
are required to verify the provenance and transit route of
this packet.

See Figure 1 for the layout of these fields.

The GDP packet including headers is fully encrypted using
AES-GCM, with the randomly generated nonce prepended to
the encrypted portion. Currently, our software switch utilizes
pre-shared keys, but we plan to build on top of this system
to implement full dTLS. The current implementation is suffi-
cient to demonstrate the impact of encryption on switching
performance.

4.2 Capsule/DPDK Runtime

We chose to use the Capsule runtime [3], which is built on
top of DPDK [4] mainly for performance and ease of devel-
opment.

DPDK is a collection of data plane libraries and poll-mode
NIC drivers that allow high throughput user-space packet pro-
cessing. In particular, the runtime uses light-weight Mbufs,
which are fixed-size cache-aligned buffers that store packet
data. Poll mode drivers generally perform well as they avoid
the interrupt processing overhead as in the case of the Linux
kernel networking stack, at the cost of saturating the entire
CPU core. DPDK drivers also generally implement advanced
features if they are supported by the NIC, such as Receive-
Side Scaling, which allows packets to be distributed between
receive queues, allowing us to scale our implementation to
multiple cores. Additionally, we have also modified an ex-
isting DPDK-based project [13] to build a baseline software
switch to benchmark our implementation against and found it
to be very performant.

Capsule is a framework for network function development
using abstractions proposed by the NetBricks paper [14]. The
NetBricks model provides intuitive high-level abstractions
for packet-processing and control flow of packets using user-
defined functions. The advantage is superior ease of develop-
ment while retaining fast packet processing performance. We
hope that the intuitive model will facilitate additional devel-
opment as there are still many features needed to fully realize
the vision of the GDP. One limitation of Capsule is that it cur-
rently only supports single-segment DPDK Mbufs per packet,
which imposes a limitation on our payload size. We plan to
address this in the future by exploring alternative avenues

such as supporting multi-segment Mbufs or implementing
fragmentation at the GDP layer.

One general limitation of this runtime is that kernel bypass
requires exclusive access to the NIC, making our implementa-
tion difficult to both run and be managed remotely on systems
with only one interface as is the case on most consumer moth-
erboards. Possible avenues of further exploration in this area
include bifurcated drivers which requires hardware support,
virtual adapters plus the use of eBPF and XDP or other kernel
packet processing mechanisms, or implementing remote man-
agement capabilities directly in the software switch.

4.3 Rust

We chose to implement our switch in Rust for the memory-
and thread-safety guarantees without compromising on per-
formance. GDP switches have a nontrivial amount of certifi-
cate validation and route lookup logic, which are difficult to
correctly implement in languages like C without risking the
introduction of memory-safety/security issues. Anecdotally,
the existing C implementation of the GDP router (the “pro-
duction” system) was considered extremely difficult to work
with, despite supporting very few features compared to the
research prototype, written in Python (for instance, certificate
generation/validation was entirely unsupported). Our hope is
that our choice of language will make it easy to extend this
switch directly, rather than having to first experiment with a
separate research prototype.

4.4 Multi-Core Caching

As discussed in previous sections, the GDP router must cache
data from the RIB, as well as keep track of the state of recently
active connections (for the nack_cache). High-throughput
routers are typically multi-core, with incoming packets dis-
tributed across cores based on a hash of the flow parame-
ters (source and destination IP and ports), known as Receive-
Side Scaling. To minimize lock contention, the ideal sce-
nario would be for each core to operate entirely independently
with its own caches for certificate, metadata, and connection
data.

However, this solution would lead to redundant RIB queries,
since each core would have to separately request data even if
it were already available to a neighboring core. A naive shared
cache, however, would hurt throughput through severe lock
contention. For instance, while processing a response from
the RIB, we would have to block all cores from processing
packets while the shared cache was being written to.

One solution would be to use a lock-free data structure for
these caches (typically hashmaps from a GDPName to the
appropriate data structure), but we found that this led to sig-
nificant implementation complexity. Instead, we elected to
use a two-level cache. Each core would have its own cache,



which it could access without contention from other cores.
In addition, there would be a global cache that cores would
query upon a local cache miss, before ultimately falling back
to an RIB lookup. If data is found in the global cache, it will
be mirrored in the local cache for future accesses. Due to
RSS, local cache misses that are handled by the global cache
will not be common in the first place since most flows will be
pinned to a single core, meaning that the majority of cache
accesses will ultimately be lock-free.

This design was also easily extendable to support cache expi-
ration, needed since routing certificates have a limited lifes-
pan, and we do not need to cache stale connections indefi-
nitely. Each local core cache is an LRU cache with a fixed
capacity, preventing them from growing without bound at the
cost of occasionally evicting valid entries. The global cache
is a hashmap with an unbounded (or extremely high) capacity.
For both the local and global caches, we evict entries lazily
- specifically, if we access a key and find an expired value,
we delete it from the cache and report a miss. In addition,
to prevent the global cache from growing without bound, a
single core periodically samples the global cache and deletes
expired entries until sampling shows them to have dropped to
an appropriately low fraction of entries.

Although this sampling process holds a write lock on the
global cache, in practice we found it to not affect throughput
significantly, since most of the time each core has the data it
needs in its local cache. This is discussed further in the next
section.

5 Experimental Results

In this section, we evaluate the performance characteristics
of the GDP router implementation on AWS EC?2 instances.
Our primary success metrics are forwarding rate measured
in packets per second, and throughput in megabits/gigabits
per second. We further derive synthetic metrics including
efficiency of handling RIB queries. We also compare against
existing implementations of the protocol where possible, and
several software switch baselines. For all experiments, we
take the average of the metric over ten seconds to reduce
variance.

Our experimental setup consists of four GDP nodes on AWS

EC2 in the topology and instance types shown in Figure
2

The instances were each configured with an Amazon ENA
(Elastic Network Adapter) and in a cluster placement group.
In this configuration, AWS guarantees up to 25Gbps of multi-
flow traffic between any two instances based on the 5-tuple
of the UDP header. Since we randomize the source and des-
tination ports at the UDP layer, inter-node GDP traffic is
considered multi-flow for these purposes. For DPDK, we use
a memory pool size of 2!8 — 1 Mbufs, with a cache of 512
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Figure 2: EC2 Instances Layout
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elements per core. We configure the port ring buffer queue
sizes at 8192 for receive and 1024 for transmit (the maximum
supported by the ENA NIC) respectively.

5.1 Performance with packet size and encryp-
tion

For this experiment, we used a single 4-core c5.xlarge in-
stance for the router node, but only used one core for the
switch.

Figures 3 and 4 shows the throughput and forwarding rate
of the the GDP router as we vary the packet size and toggle
encryption. We also plot the results from a minimal DPDK-
based software switch that forwards raw TCP/IP packets to a
hardcoded destination without any extra processing. For this
experiment we configured the router node as one c5n.large
instance with one core pinned to the switch.

As previously mentioned, the Capsule runtime only supports
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single-segment DPDK Mbufs. Our implementation uses 2048
byte Mbufs, and we have measured our maximum payload
size under this topology at 1766 bytes.

Our implementation achieves a peak throughput of 1.12Gbps
with encryption, and 3.00Gbps without by using such 1766
byte payloads. Our unencrypted throughput lags slightly be-
hind that of the minimal DPDK switch, which could be at-
tributed to the extra verification and packet processing over-
head in our code. Without encryption, our throughput scales
linearly with packet size, and the forwarding rate exceeds
200kpps even at 1776 byte payloads. It can be seen that the
performance penalty of encryption increases with packet size,
leading to smaller increases in throughput as a result.

To compare with existing implementations, the Click-based
production GDP router achieved 500Mbps using 1000 byte
PDUs using four cores on the c5.xlarge instance [7]. At
1000 byte payloads, using only a single core, we achieved
814.27Mbps, which is around a 6.5x increase in total through-
put normalized by cores. We do note that the c5.xlarge has two
physical cores and two hyperthreads, and so the core-to-core
comparison is not exactly equal. We suspect the performance
difference is due to several reasons. The authors of the Click-
based implementation claim their implementation has not yet
undergone optimization. Our kernel-bypass implementation
uses a highly optimized driver for the ENA interface, which
in itself is significantly more powerful than most commodity
NICs, and we have configured the runtime specifically for per-
formance. Finally, their implementation seems to saturate at
1Gbps even in the cloud, suggesting some type of limit in the
routing path that the authors do not elaborate upon.

In general, the performance results of our implementation are
extremely promising for a production use case. We hope to
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test on a wider variety of systems in the future to establish
the feasibility of running GDP routers at the edge and so
forth.

5.2 Multi-core performance scaling

This experiment used a c5.4xlarge instance, which has 8 phys-
ical cores. We scaled the switch to pin to multiple cores in
order to measure how packet processing performance scales.
We configured the packet generator to send all packets to node
3, and so that route should remain cached in the forwarding
table for the duration of the experiment.

Figure 5 shows perfect linear scaling of throughput up to
eight physical cores, the maximum on this instance type. We
achieved slightly more than 100kpps per core, demonstrating
our implementation’s ability to scale in switching a single flow
with a route that is already in the forwarding table.

We experimented with including the other 8 hyperthread sib-
lings, but observed extremely erratic performance and no
notable performance increase. Thus we conclude that hyper-
threading is generally of little benefit in our implementation.
This is generally concordant with recommendations for Net-
work Function Virtualization (NFV) systems from vendors
such as Red Hat [15].

5.3 Multi-core performance with forwarding
table misses

This experiment also used the same c5.4xlarge instance for
the switch. Forwarding table misses, or RIB misses, refer to a
case when the packet’s destination address is not in the local
forwarding table. Such packets generate two packets, a Nack
back to the sender, and a RIB query, which in itself will gen-
erate an RIB response that must be added to the forwarding
table at some point in the future. This modification of the
forwarding table acquires an exclusive write lock, which can
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have adverse impacts on read throughput. Forwarding table
misses will be common in the GDP network as routes are
mapped into the network lazily, and so a performant architec-
ture is critical.

In order to compute how efficient we are at handling forward-
ing table misses and operations on the local forwarding table,
we generated a workload to flood the switch with packets
destined for node 3, but with a proportion destined for ran-
dom GDP addresses, which causes forwarding table misses.
The RIB was specially configured in this case to return a null
route as to trigger writes to the forwarding table. For this
experiment, we measure the forwarding rate at the receive
side of node 3 in order to observe how many packets were
forwarded by the switch.

Figure 6 illustrates how our implementation’s forwarding rate
scales with forwarding table miss rate. The expected forward-
ing rate for each case is derived by multiplying the hit rate
with the forwarding rate at zero miss rate. As per the graph,
under most cases the forwarding rate to known destinations
only differs minimally from the expected value, and by no
more than 10% even at very high miss rates. In general, by
using a per-core cache we expect next-hop lookups to be re-
solved without locking, and so this benchmark measures the
impact of write lock contention on the forwarding table. We
limited the switch to four cores as we were unable to accu-
rately measure receive rate at node 3 above this number, and
we surmise this is due to the comparatively smaller instance
type. In general we expect our results to scale for a reason-
able number of cores, indicating that our implementation can
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handle a high rate of forwarding table misses with minimal
loss in switching performance.

6 Future Work

6.1 Hierarchical Trust Domains

One important area of future work is supporting hierarchi-
cal trust domains (see Figure 7). The basic idea behind hi-
erarchical trust domains is that instead of having a single
set of routers all managed by an RIB, there are multiple do-
mains, each of which has border and interior routers and its
own RIB. Interior routers can only communicate with each
other, and communication between domains requires addi-
tional information bases that coordinate links between border
routers.

The main benefit of these trust domains is that the path of
packets within a domain is hidden from other domains. If a
node A in domain X communicates with node B in domain Y,
none of the routers in X know the exact routing path through
Y, reducing the information leakage throughout the system in
case some domains are monitored or compromised in some
way.

Our system is designed to be able to maintain its performance
in trust domain systems: because our certificate verification
scheme works with multi-hop paths and only validates when
establishing connections, it could naturally be extended to
paths that cross multiple trust domains. The main innova-
tion required in implementing trust domains would be setting
up multiple information bases, distinguishing border routers
from interior routers, and adding domain-wide certificates
indicating access to a resource.

To make trust domains hierarchical — that is, to allow trust
domains to contain other trust domains — would also be a
straightforward extension of our system. That is because from
a router’s perspective, even if a chain of communication goes
into a trust domain, then into another trust domain, the vali-
dation is still just a certificate chain, so our code would still
work. Again, the main difficulty in this future work would
be coordinating the information bases themselves and adding



additional certificates for nested trust domains.

6.2 Integration with existing GDP infrastruc-
ture

Currently, the routing system uses abstractions representing
GDP structures. For instance, we use a custom metadata struc-
ture to store the public key and compute the GDPName. While
these abstractions are effective for evaluating performance
and functionality, integrating with the existing GDP stack and
implementations of DataCapsules etc. would allow for this
routing system to be used for real GDP applications.

6.3 Deployment to the edge

Finally, we hope to deploy this system to a real network of
communicating devices on the edge, supporting the DataCap-
sule and secure computation abstractions as part of the GDP.
This would allow us to obtain more accurate benchmarks
on real traffic, rather than the synthetic workloads discussed
earlier. Similar benefits could be obtained by running on real
edge devices (rather than AWS cloud instances and virtualized
NICs).

7 Conclusion

We present an implementation of a routing system for the
Global Data Plane built on top of Capsule/DPDK in Rust that
achieves faster performance than previous implementations.
‘We have demonstrated the performance on this system under
various synthetic workloads, and shown that it scales well
across multiple cores with performance comparable to raw
IP switches. Our system supports features such certificate is-
suance and verification, that lay the foundation for supporting
hierarchical trust domains in the future as part of a complete
implementation of the GDP.
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